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ABSTRACT
In static timing analysis, clock-to-q delays of flip-flops are
considered as constants. Setup times and hold times are
characterized separately and also used as constants. The
characterized delays, setup times and hold times, are ap-
plied in timing analysis independently to verify the perfor-
mance of circuits. In reality, however, clock-to-q delays of
flip-flops depend on both setup and hold times. Instead of
being constants, these delays change with respect to different
setup/hold time combinations. Consequently, the simple ab-
straction of setup/hold times and constant clock-to-q delays
introduces inaccuracy in timing analysis. In this paper, we
propose a holistic method to consider the relation between
clock-to-q delays and setup/hold time combinations with a
piecewise linear model. The result is more accurate than that
of traditional timing analysis, and the incorporation of the
interdependency between clock-to-q delays, setup times and
hold times may also improve circuit performance.

1 Introduction
Modern IC design faces tremendous challenges in maintain-
ing a continuously improving performance. To achieve this
goal, new manufacturing technologies have been introduced
every several years to improve the performance of circuit
components, and the circuit design flow has been refined re-
lentlessly to meet the requirements of new technologies and
design methodologies.

In the advance of the semiconductor industry, the design
flow follows the manufacturing technology closely to bring
the new progress into the design domain. In adopting a new
manufacturing technology, the design flow abstracts lower
level details and exposes only the extracted device and circuit
models of different levels to designers, so that the huge logic
resource become manageable in the design domain.

As a representative of the abstraction at circuit level, static
timing analysis (STA) assumes that combinational circuit
stages between flip-flops are independent, and a flip-flop can
work reliably if its setup time and hold time are met [1, 2].
With this assumption, only the worst/best corners (late and
early modes) need to be verified with the largest/smallest
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Figure 1: Setup time (tsu), hold time (th) and clock-
to-q delay(dcq) of a flip-flop. Setup slack and hold
slack are defined as the distance from the latest and
earliest signal switching to the active clock edge, re-
spectively.

combinational delays. Consequently, manufacturing details
are hidden behind the abstracted gate delay models, and the
performance of the circuit is evaluated as independent of ap-
plications.

In STA, a flip-flop is characterized by its setup time, hold
time, and clock-to-q delay. These characteristics can be ex-
plained using the example in Figure 1. If the latest signal
switching at the input of the flip-flop is tsu time before it is
sampled by the active clock edge, and if the earliest signal
switching happens th time later than the active clock edge,
the data at the input of the flip-flop can be latched correctly.
In this case, the delay from the active clock edge to the out-
put of the flip-flop (Q), clock-to-q delay dcq, is characterized
as a constant. If either of the two constraints is violated,
the flip-flop is considered to not work properly, and a timing
error is reported.

The timing model of a flip-flop with setup time, hold time
and constant clock-to-q delay described above is a significant
simplification for timing analysis and optimization. As a re-
sult, the combinational circuits between flip-flops can be ana-
lyzed and optimized independently without considering time
borrowing as in designs using level-sensitive latches. This effi-
ciency in timing analysis is very important because front-end
circuit design usually undergoes many analysis-optimization
iterations.

The simplified flip-flop model above, however, sacrifices
circuit performance for the sake of execution efficiency. In
order to simplify the clock-to-q delay to be a constant, the
latest signal switching must be tsu earlier than the clock edge.
Otherwise, the circuit is not considered to work properly. In
reality, however, the flip-flop may still latch the input data
correctly if the arrival time of a signal is late, although the
clock-to-q delay may become larger than the constant delay.
If the arrival time of the input signal is too close the clockICCAD 2016, DOI: 10.1145/2966986.2967064
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Figure 2: The three dimensional clock-to-q delay sur-
face of a 45nm flip-flop with respect to setup slack
and hold slack.

edge, the flip-flop may finally enter metastability and thus
fail to work properly. Similarly, if the hold time constraint
is violated, the flip-flop also works with a larger delay in a
feasible region, before the signal change is too close to the
clock edge. For a given signal, we refer to the distance from
the signal switching at the input of a flip-flop to the clock
edge as setup slack, and the distance from the clock edge to
the signal switching as hold slack, as illustrated in Figure 1.
Consequently, setup time and hold time in the traditional
definition are actually also slacks at which the clock-to-q de-
lay of the flip-flop is characterized as a constant.

The relation between clock-to-q delay, setup slack and hold
slack can be demonstrated using the simulated delay surface
of a 45nm flip-flop in Figure 2. In this example, we can see
that when the setup and hold slacks are large, the delay of
the flip-flop is a constant. If these slacks are reduced enough,
the clock-to-q delay becomes larger, until the flip-flop finally
enters metastability. In traditional STA, the flip-flop is as-
sumed to work in the area with a constant clock-to-q delay.
This simplification does not take advantage of the feasible re-
gion beyond the setup time and hold time, so that the circuit
performance may be underestimated.

If the flip-flop is allowed to work in the region with the
setup slack smaller than setup time, the clock period for the
critical path of the circuit can be smaller, because the lat-
est signal switching can arrive at the ending flop-flip later.
Accordingly, the delay of this flip-flop becomes larger, but
the increased delay only affects the combinational path in
the next stage. In case the delay of the combinational path
of the next stage is not large, no timing violation appears.
Consequently, the critical path receives more timing budget
for signal propagation, leading to an improved circuit perfor-
mance. This delay compensation is very similar to designs
with level-sensitive latches, or designs using intentional clock
skew scheduling. The advantage of this phenomenon is that
the performance increase comes from a more accurate timing
analysis, without invoking the complete design-optimization
flow or timing ECO. Therefore, timing analysis considering
this delay compensation is specially useful in late stages of
design flow such as timing signoff.

To take advantage of the relation between clock-to-q and
setup/hold slacks, several methods have been proposed. The
method in [3, 4] exploits the compensation between setup
slack and hold slack with respect to a given clock-to-q delay

and produces results with more relaxed slacks. To reduce
simulation time, a method based on Euler-Newton tracing
to characterize this curve with respect to setup/hold slacks
efficiently is proposed in [5, 6]. These methods only consider
the relation between setup slack and hold slack, so that the
three dimensional interdependency problem is simplified into
a two-dimensional problem.

To consider the three dimensional interdependency between
clock-to-q delay, setup slack and hold slack, the method in [7]
uses a quadratic programming model to calculate the optimal
clock period directly, but it is limited due to the scalability of
this high-order programming method. To simplify the three
dimensional model, the method in [8] approximates the re-
lation between clock-to-q delay and setup/hold slacks using
an analytic function and calculates the minimum clock pe-
riod of a circuit by iterations. This method, however, cannot
guarantee to converge in the given number of iterations. In
addition, the method in [9] approximates the three dimen-
sional delay surface using linear planes, but in calculating
the minimum clock period this method splits the problem
into two dimensional problems, so that it cannot guarantee
an optimal solution. Furthermore, the method in [10] pro-
poses a very efficient algorithm to capture timing violations
in a circuit, but it only considers the relation between clock-
to-q delay and setup slack.

In this paper, we propose a holistic method to characterize
the three dimensional delay surface and calculate the mini-
mum clock period using a piecewise ILP model. Our contri-
butions are as follows:
• We characterize the three dimensional delay surface by

approximating it with small polygons, either triangular
or rectangular. For each polygon, we only simulate the
real flip-flop delays using SPICE at its corners, and verify
whether the linear plane defined by these corners can ap-
proximate the real clock-to-q delay with a given accuracy.
Since not all the delay values inside a polygon are sim-
ulated, this method can reduce the characterization time
significantly. In addition, this piecewise model has the ad-
vantage to approximate nearly any surface with a sufficient
number of small polygons.

• The piecewise delay surface is used to calculate the min-
imum clock period considering the interdependency be-
tween clock-to-q delay and setup/hold slacks. Since this
is the first time that the interdependency is considered in
the three dimensional space directly with enough modeling
accuracy and scalability, the proposed method evaluates
the clock period more accurately than previous methods
and timing violations can be removed effectively.
The rest of this paper is organized as follows. In Sec-

tion 2 we review the background and the state-of-the-art re-
search on the interdependency between clock-to-q delay and
setup/hold slacks. In Section 3 we explain our method to
characterize the three dimensional delay surface of a flip-flop
using piecewise polygons. This model is used to calculate the
minimum clock period with an ILP formulation. Experimen-
tal results are shown in Section 4. The conclusion is given in
Section 5.

2 Background and state of the art
Timing constraints of digital circuits can be explained using
Figure 3, where three flip-flops are connected by combina-
tional circuit blocks. When an active clock edge is generated,
all flip-flops are triggered at the same time. In traditional
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Figure 3: Circuit example with three flip-flops and
two combinational circuits.

STA, timing constraints are defined with setup time, hold
time and constant clock-to-q delays. For flip-flops i and j,
the timing constraints can be written as

dcq,i+dij+tsu,j≤T (1)

dcq,i+dij≥th,j (2)

where dcq,i is the delay of flip-flop i, dij (dij) is the maximum
(minimum) delay of the combinational circuit between flip-
flops i and j, tsu,j (th,j) is the setup (hold) time of flip-flop
j, and T is the clock period.

The traditional setup time of a flip-flop is characterized
by moving the signal switching at the input of the flip-flop
to the active clock edge gradually. As the signal switching
approaches the active clock edge, the delay of the flip-flop
starts to increase. When this delay reaches a given metric,
e.g., 110% of the minimum delay of the flip-flop character-
ized with very large setup and hold slacks, the time difference
between the signal switching and the active clock edge is de-
fined as the setup time. Hold time is characterized similarly
by moving the signal switching after the active clock edge to
the clock edge gradually. Accordingly, this increased delay of
the flip-flop, 110% delay in this case, is used as the clock-to-q
delay in timing analysis.

The characterization process above guarantees that the cir-
cuit works properly if the constraints (1) and (2) are met for
each pair of flip-flops, because the reserved setup time from
latest signal switching to the active clock edge and the re-
served hold time from the clock edge to the earliest signal
switching together guarantee that the clock-to-q delay of the
flip-flop does not exceed the characterized delay. This guar-
antees further that the timing constraints of the next flip-flop
stage, e.g., between flip-flop j and k in Figure 3 can be ver-
ified by assigning the clock-to-q delay of the flip-flop j to
the characterized constant delay. In this way, the timing de-
pendency between consecutive flip-flop stages is hidden from
designers.

The timing characterization above simplifies the delay model
of a flip-flop. As explained earlier, when setup slack or hold
slack becomes smaller, the delay of the flip-flop increases.
Figure 4 illustrates several curves with respect to the setup
slack and hold slack as in [9]. On each curve, the clock-to-q
delay is a constant, and the curve closer to the axes has a
larger delay. Before the delay becomes very large and soon
the flip-flop enters the metastable region, all these curves are
valid and the flip-flop can work with each setup/hold slack
combination on them. The traditional setup/hold time delay
model, however, only assumes that the flip-flop works with
curves with a delay no larger than the characterized delay,
e.g., 110% of the stable delay. All the other curves on the
left of the 110% curve are simply ignored.

When characterizing the traditional setup time, the hold
slack is set to a very large value to exclude its influence. The
setup slack is then decreased gradually, until the delay of the
flip-flop increases to 110%. The hold time is characterized
similarly. Therefore, the setup and hold time point used for
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Figure 4: Delay curves of a flip-flop. (a) Curves of
setup/hold slack combinations with respect to differ-
ent constant clock-to-q delays. (b) Characterization
point of setup time and hold time in traditional STA.

static timing analysis is shown as point A in Figure 4b. When
point A is used in STA, the shaded area under the curve is
also included. This area is located below the curve, so that
the delay in the area is larger than 110% delay. However,
the flip-flop delay used in STA is still assumed as the char-
acterized 110% delay, posing a risk that the circuit still does
not work even all timing constraints are met. To solve this
problem, the method in [3, 4] verifies whether all the setup
and hold slack pairs in the circuit are above the 110% curve,
meaning the delay of all the flip-flops are smaller than the
110% delay.

The method in [3, 4] excludes the delay curves lower than
the 110% delay curve in timing analysis, so that the clock
period cannot be improved. For example, assume flip-flop j
in Figure 3 works with a small setup slack, so that the clock
period for this flip-flop stage can be lowered. This small
setup slack may incur an increase of the clock-to-q delay of
flip-flop j. This delay increase, however, may be absorbed by
the stage between flip-flops j and k, if this stage has a small
combinational delay, so that the lowered clock period works
with the whole circuit. This scenario is similar to the case
that flip-flop j works at the point B in Figure 4a and flip-flop
k still works at point C.

The delay compensation case has been investigated by the
methods in [8, 9, 10]. The method in [10] considers the flexi-
ble clock-to-q delay in timing analysis, but without modeling
the joint effect of setup and hold slacks. In this method, a
flip-flop is allowed to work with different delays due to setup
slacks, similar to the points on different curves at a given
hold slack. Consequently, the interdependency between the
clock-to-q delay and the setup time slack becomes a two di-
mensional problem, resulting in a highly efficient timing anal-
ysis algorithm. The method in [9] models the three dimen-
sional delay surface directly, and solves the delay compensa-
tion problem with respect to setup time slack and hold slack
separately, actually also transforming the three dimensional
problem into two-dimensional. The method in [8] approx-
imates the delay surface using an analytic model, but the
proposed iteration-based method cannot guarantee to con-
verge in a given number of iterations.

As described above, the previous methods either cannot
solve the STA problem considering the interdependency be-
tween clock-to-q delay, setup slack and hold slack, or cannot
guarantee the quality of the solution. In this paper, we pro-
pose a holistic method to calculate the minimum clock period
of a circuit by modeling the three dimensional delay surface



using piecewise polygons. Thereafter, we calculate the min-
imum clock period using a piecewise ILP model combined
with trimming techniques. The proposed method is very ef-
ficient in both delay modeling and timing analysis.

3 Piecewise linear delay model and timing anal-
ysis

Static timing analysis considering the flexibility of flip-flop
delays needs to solve two problems: 1) The three dimensional
surface of the flip-flop should be modeled. In this step, only
the necessary delay information that can be used to calculate
the minimum clock period should be retained. Other delay
information should be omitted to reduce simulation time; 2)
A timing analysis algorithm using the piecewise delay model
to calculate an accurate minimum clock period for a circuit.
This algorithm should take the delay compensation across
flip-flop stages into account and calculate the minimum clock
period in a reasonable time.

3.1 Adaptive piecewise polygonization of a three
dimensional delay surface

To transform the delay surface in Figure 2 into a form that
can be used by static timing analysis, we partition it into
small regions and approximate each one using a linear plane
in the region, or a polygon. This piecewise approximation
has the flexibility enabling the tradeoff between runtime and
accuracy. The more polygons into which the surface is par-
titioned, the more accurate this approximation is, but the
more time is required to generate these polygons and the
slower the timing analysis algorithm becomes.

The linearization of a three dimensional surface is a prob-
lem studied widely and many methods have been proposed
[11, 12], using techniques such as adaptive sampling. But
these methods are very general and do not take advantage of
the special shape of the three dimensional delay surface as
shown in Figure 2. In this section, we propose an adaptive
method to approximate the delay surface using a set of poly-
gons. This piecewise delay model can be used by the timing
analysis algorithm in Section 3.2 directly.

The linearization of the delay surface includes three steps.
First, we identify the boundary of the surface projected to
the setup/hold slack dimensions using triangles. When the
setup slack or the hold slack is very small, the flip-flop enters
the metastable region, which should be excluded from the
valid working space of the flip-flop. Second, we partition
the delay surface inside the boundary with rectangles. We
then check the approximation accuracy of each rectangle and
split it further if the approximated delay is too far away
from the real delay on the surface. Third, we merge the
rectangles produced in the second step so that the number
of polygons can be reduced, which improves the efficiency of
timing analysis using this piecewise model.

3.1.1 Approximating the surface boundary using tri-
angles

When the setup slack or the hold slack becomes too small,
the flip-flop may enter the metastable region. The boundary
between the working region of a flip-flop and its metastable
region has a shape similar to the curve in Figure 5a when
projected into the setup and hold dimensions.

In the proposed method, the boundary of the delay surface
is approximated by a chain of linear segments whose ending
points are on the boundary curve, as shown in Figure 5a. As
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Figure 5: Approximation of the boundary of the de-
lay surface. (a) Approximation with linear segments.
(b) Delay surface approximation with triangles.

we do not know the shape of the curve, we generate these
linear segments to approximate it. We start from a single
linear segment shown as the right-most segment connecting
points A and B where the setup slack and hold slack are set
to large values, respectively.

In this setting, the setup slack at point A does not affect
the delay of the flip-flop, so that a binary search of different
hold time slacks can capture the delay value at A quickly. In
each search, we run SPICE simulation at the target point. If
the clock-to-q delay is larger than a given threshold or the
SPICE simulator does not return a valid delay, this point is
considered outside the feasible region of the clock-to-q delay.
Otherwise, we find a valid point in the feasible region. After
the binary search is finished, the valid point with the smallest
hold slack is identified as point A in Figure 5a. Similar to
this process, we assign the flip-flop a very large hold time
slack and execute a binary search along the setup slack to
identify point B.

The linear segment connecting A and B (A↔B) still can-
not be used as an approximation of the surface boundary,
because the point at the middle of this segment may be far
away from the real boundary. To check the distance between
this approximation point (C) and the real boundary point
(D), we apply a binary search in the direction perpendicu-
lar to the segment A↔B toward D using SPICE simulation.
Afterwards, we compare the distance between C and D. If it
is larger than a given threshold (kth), we split the segment
A↔B and create two linear segments A↔D and B↔D. In this
way, the distance between the linear segments and the real
boundary is reduced. This refining process is repeated fur-
ther until the entire boundary curve is approximated within
the accuracy requirement.

With the linear segments following the boundary closely,
we then create triangles to approximate the three dimen-
sional delay surface in the area close to this boundary. First
we create triangles using these linear segments as their hy-
potenuse, as shown in Figure 5b. Each of these triangles
defines a valid region in which the delay surface is approxi-
mated with a linear plane defined by the corner points of the
triangle. For example, in the triangle formed by the points
B, E, and F, the clock-to-q delays at B and F are already
known from SPICE simulation during constructing the lin-
ear segments. We then run SPICE simulation at point E.
With the coordinates of the three corner points B, E, and
F as well as the corresponding clock-to-q delays, the linear
plane in the three dimensional space can be constructed eas-
ily.

To verify the accuracy of the triangular approximation in
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the three dimensional space, we select a point inside the tri-
angle and run SPICE simulation again. We then compare
the approximated delay by the linear plane and the simu-
lated delay. Since the real delay surface is convex, the point
that has an equal distance to the three ending points is cho-
sen for the verification. In a right triangle, this point is at
the middle of its hypotenuse.

In the comparison above, if the difference between the ap-
proximated value and the real delay value is larger than a
threshold dth, we split the triangle into two as illustrated
in Figure 5b. Consequently, we create more linear segments
along the delay boundary to increase the approximation ac-
curacy. Note in generating the linear segments along the
boundary above, we check the distance of the approximate
point to the boundary in the setup/hold slack dimensions
using the threshold kth. In verifying the approximation ac-
curacy of the delay, we compare the delays directly so that
the linear segments approximating the boundary might be
split further as shown in Figure 5b.

3.1.2 Approximating the delay surface using rectan-
gular polygons

The triangles found above only cover the areas of the delay
surface close to the boundary. In order to approximate the
whole surface, more polygons are required. Instead of using
a lot of polygons directly, we take advantage of the fact that
the delay surface is a constant surface when both the setup
slack and the hold slack are large. In other words, if the signal
switching at the input of a flip-flop is always far way from
the active clock edge, the flip-flop always works in a stable
region with a constant delay. To approximate this area, we
need only one linear plane.

To identify the constant linear plane, we start a search
from a stable point (G) at which the setup slack and hold
slack are very large, in the direction in which setup and hold

slacks decrease at the same time, as illustrated in Figure 6a.
At each step, we run SPICE simulation to find the real delay
on the surface. Once we reach the first point at which the
simulated delay increases, we use the last stable point (H) as
the the corner of the stable linear plane.

The ending point H in Figure 6a is hardly the optimal point
from which the largest stable region is covered, because there
are many such points at which the clock-to-q delay deviates
from the stable value on the delay surface. However this non-
optimal point does not affect the approximation accuracy
or efficiency, because the uncovered region will be split and
merged as follows.

To cover the areas between the triangles close to the bound-
ary of the delay surface and the newly identified stable region,
we create rectangles and split them with respect to the ap-
proximation accuracy. As illustrated in Figure 6b, we start
from the edges of the triangles and expand to the right and
to the top of the area. Consequently, relatively large rect-
angles are created. Note there is some overlapping between
these rectangles, e.g., the ones covering the corner point H.
In the proposed ILP formulation, this overlapping is allowed
and the solver chooses one of the points on the overlapping
polygons as the working point of the flip-flop. In fact, a work-
ing point from any polygon works because they are all delay
approximations meeting the specified accuracy.

The corners of a rectangle in Figure 6b are located on the
real delay surface directly. Therefore, the largest approxima-
tion error likely happens at the center of the rectangle. We
run SPICE simulation at each center of the rectangle and
compare the real delay with the approximated delay on the
plane. If the difference is larger than the threshold dth, the
rectangle is split further, as shown in Figure 6c.

In forming the rectangles, we simply expand from the trian-
gles. This simplification and the following split may produce
more rectangles than necessary. Therefore, we try to merge
neighboring rectangles in the last step, because a smaller
number of rectangles means fewer constraints in the follow-
ing ILP formulation. To merge rectangles, we search from
each rectangle to the upper and right directions, because the
delay in these directions changes relatively slowly. We com-
bine each pair of neighboring rectangles into one rectangle, if
the approximation value at the center of the new rectangle is
in the range dth from the real delay on the delay surface. The
result of the rectangle merging is illustrated in Figure 6d.

3.2 Piecewise ILP model for calculating the min-
imum clock period

After the delay surface is approximated using polygons, we
need to calculate the minimum clock period of a circuit.
Compared with traditional STA, the challenge of using this
piecewise model is to determine on which polygon a flip-flop
works. In this section, we describe a method based on ILP
formulation to calculate the minimum clock period.

Assume in total there are np polygons approximating the
delay surface. Since in timing analysis a flip-flop can only
work with one setup/hold slack combination, only one of
these polygons should be selected for the flip-flop. Therefore,
we define a 0-1 variable zki for the kth polygon in the piece-
wise delay model for flip-flop i. If the working point of the
flip-flop falls into the kth polygon, zki =1; otherwise, zki =0.
To allow the solver to choose one and only one polygon, we



specify the following constraint∑
k=1,...,np

zki =1. (3)

If the projection of the kth polygon to the setup/hold slack
dimensions is a rectangle, as illustrated in Figure 7a, the
clock-to-q delay of flip-flop i in this region can be expressed
as

dkcq,i=f(ski ,h
k
i )=ck·zki +cks ·ski +ckh·hk

i (4)

skl ·zki ≤ski≤sku·zki , hk
l ·zki ≤hk

i≤hk
u·zki (5)

where sk and hk are the setup slack and the hold slack, re-
spectively, and (4) defines the linear plane in the three di-
mensional delay space.

As described in Section 3.1, the real delays of the flip-
flop at the corner points of the rectangle are known from
SPICE simulation. Therefore, we can deduce a linear plane
which passes the delay points corresponding to the corners of
the rectangle. Such a plane can be characterized with only
three points, and to be conservative we select three out of
the four corner points with the largest delays to create the
plane. Consequently, the constant coefficients ck, cks , ckh in
(4) can be determined. Since this polygon is valid only in
the rectangular region as illustrated in Figure 7a, the lower
and upper bounds of the setup slack are known from the
characterization process as skl and sku. Similarly, the lower
and upper bounds of the hold slack are known as hk

l and hk
u.

In (5) the lower and upper bounds are all multiplied by zki
to enable or disable this polygon. If this polygon is selected
so that zki =1, the constraints (4) and (5) describe a set of
linear constraints. If this polygon is not selected with zki =0,
the ranges of the setup slack and the hold slack are all forced
to 0, so that both ski and hk

i are forced to 0. In this case,
the delay f(ski ,h

k
i ) is also equal to 0, because the constant

coefficient ck is also multiplied by zki .
For a triangular region, the corresponding polygon can be

defined similar to (4) and (5). To prevent a setup/hold slack
combination from falling into the area lower than the hy-
potenuse of the triangle, we add another constraint as

hk
i≥ckt +ckt,s·ski (6)

where ckt and ckt,s are characterized constants for the triangle.
The concept of this additional constraint can be explained
using the example in Figure 7a. The newly added constraint
(6) only allows the slack combination to fall into the region
above the hypotenuse. Together with (5), this new constraint
defines exactly the triangular region.

With the constraints (4)–(6) defined, the setup slack si,
hold slack hi and the clock-to-q delay dicq at flip-flop i can
be written as

si=
∑

k=1,...,np

ski , hi=
∑

k=1,...,np

hk
i (7)

didq=f(si,hi)=
∑

k=1,...,np

f(ski ,h
k
i ) (8)

The constraints (7) and (8) are valid because the solver can
only select one polygon constrained by (3). Consequently,
the slacks and clock-to-q delays ski , hk

i and dkcq,i can take
nonzero values only in one region. Therefore, the sums in (7)
and (8) are equal to the slacks and clock-to-q delay at the
flip-flop.

(a) (b)
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l

hk
u

hk
l
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i =ckt +ckt,s·ski

T−f−dijT−f−dij

f+dij

f+dij

Figure 7: Slack ranges and polygon trimming. (a)
Triangular and rectangular ranges of setup and hold
slacks. (b) Trimming polygons using absolute upper
and lower bounds of slacks.

In (1), setup time should be added to the path delay to
verify the clock period. This setup time, however, is a vir-
tual metric to guarantee that the clock-to-q delay is no larger
than a given value, e.g., 110% of the stable delay. Since we in-
corporate the increase of clock-to-q delay in the delay model,
this setup time is not needed in the constraint anymore. For
the same reason, hold time is also removed from the con-
straint (2). Consequently, the timing constraints between
flip-flops i and j can be written as

sj≤T−f(si,hi)−dij (9)

hj≤f(si,hi)+dij . (10)

In the constraints (9) and (10), the feasible working region of
the flip-flop is already included in the regions of the polygons
approximating the delay surface.

With the constraints above, the ILP problem to calculate
the minimum clock period can be expressed as

minimize T (11)

subject to (3)−(10), ∀ flip-flop pair (12)

Note that we relax the constraints for the variables sj and hj

in (9) and (10) from equation to inequation to simplify the
formulation. Since the values of sj and hj returned by the
solver are always no larger than the real slacks defined by the
right side of (9) and (10), the calculated minimum value of
T is always a feasible solution.

Since the interdependency between clock-to-q, setup slack
and hold slack allows timing compensation across flip-flop
stages, the clock period can be lowered compared with the
results of the traditional STA. However, this improvement
incurs a large runtime in solving the ILP problem (11)–(12).

To reduce the computational complexity, we trim the poly-
gons in the delay model of flip-flops. The basic idea is that
we find absolute lower and upper bounds of the setup slack
si and the hold slack hi. The polygons completely falling
outside the bounding box can be removed from the delay
model.

In characterizing the flip-flop delay surface, we know that
the delay f(si,hi) are bounded in a range [f , f ], where f is
the stable delay of the flip-flop when the setup slack and the
hold slack are very large, and f is the delay beyond which
we consider that the flip-flop enters metastability. For the
clock period T , we also specify its range as [T , T ], where T
(T ) is the lower (upper) bound of the clock period calculated
by setting all setup slacks to the smallest (largest) values
from delay characterization, and all clock-to-q delays to the
lower (upper) bound f (f). Consequently, we can specify the



Table 1: Experimental Results of The Piecewise Linear Model and The ILP-based STA
Circuit Trimming Comparison Runtime

ns ng nt gt ts(%) t′s(%) vsp vsf vhp vhf T (s)

systemcdes 339 3617 160 53 1.30 1.27 875 67 167 10 2
wb dma 550 3780 338 59 2.42 2.36 3031 255 177 11 4
aes core 1015 26638 413 54 1.04 1.02 9351 246 201 13 11
tv80 1044 8499 433 54 1.12 1.10 6199 108 101 11 5
mem ctrl 2043 9833 635 60 0.91 0.88 1087 89 152 25 24
usb funct 2262 19234 763 45 0.99 0.94 6123 201 69 11 4
ac97 ctrl 2525 11482 1328 62 1.92 1.87 5580 799 178 12 9
pci bridge32 3673 16918 1620 55 1.22 1.19 3918 187 191 10 17
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Figure 8: Runtime with different polygon numbers.

range of the setup slack of flip-flop j with a combinational
path from flip-flop i as [T−f−dij , T−f−dij ]. For the hold
slack at flip-flop j, the range can be calculated similarly as
[f+dij , f+dij ]. Thereafter, we check all the polygons in the
delay model and delete those that are completely outside the
bounding box, as illustrated in Figure 7b, where the thick
dashed line shows the boundary of the possible region for
the flip-flop.

After trimming polygons, we remove combinational paths
and flip-flops that do not need to be included in the ILP for-
mulation. If the source and sink flip-flops of a path always
work in the stable region, this path is removed because it
does not affect the minimum clock period. If all the paths
connected to a flip-flop are removed, the flip-flop is also re-
moved from the ILP formulation to reduce the computational
complexity.

4 Experimental Results
The proposed framework was implemented in C++ and tested
using a 2.67 GHz CPU. We demonstrate the results with cir-
cuits from the TAU13 benchmark set. These circuits were
synthesized and optimized using a 45nm library and there-
after balanced by clock skews. The number of flip-flops and
the number of logic gates in these circuits are shown in the
columns ns and ng in Table 1, respectively. The interde-
pendency of clock-to-q delay, setup slack and hold slack was
characterized with HSPICE. The ILP solver for the optimiza-
tion problem was Gurobi [13].

In characterizing the three dimensional surface as discussed
in Section 3.1, the piecewise model was constructed in 9 min-
utes and in total 401 points were simulated using HSPICE.
The final piecewise model contains 64 polygons. We also sim-
ulated the delay surface within the region in which setup and
hold slacks are smaller than 100ps with 1ps resolution. The
total simulation time of this surface is 2.8 hours, confirming
the efficiency of the proposed characterization method.

The results applying the piecewise delay model and the
ILP-based timing analysis are shown in Table 1. The number
of flip-flops after trimming is shown in the column nt. The
number of polygons in the delay model was reduced from 64
to the average number shown in the column gt. These results
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Figure 9: Comparisons of setup violations of flip-
flops with [9] and [10]. The proposed method has no
violation.
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Figure 10: Comparisons of setup time violations of
paths with [9] and [10]. The proposed method has
no violation.

demonstrate that the trimming technique in our algorithm
can reduce the number of flip-flops in the ILP model and the
number of polygons effectively, resulting in a much smaller
problem space.

To demonstrate the improvement in clock period consider-
ing the interdependency of clock-to-q delay, setup slack and
hold slack, we compare the clock period calculated by our
method with the result from traditional STA. The column
ts in Table 1 shows the relative clock period reduction from
STA, in which the setup time is defined as the input slack
when the clock-to-q delay is degraded to the 110% of the sta-
ble delay. The column t′s shows the clock period reduction
from the result of STA with the setup time defined with re-
spect to the point at which the clock-to-q delay just starts to
increase. This setting produces a smaller clock-to-q delay but
a larger setup time. In both scenarios, our method achieved
up to 2.42% and 2.36% of improvement in the clock period.
This reduction of clock period exclusively results from the
more accurate modeling and evaluation of the interdepen-
dency of clock-to-q delay, setup slack and hold slack, and
no additional resource is required. Therefore, the proposed
method is very useful in late stages of design flow, where
design iteration is normally not preferred.

In traditional STA, the three dimensional clock-to-q delay
model is not used. Therefore, STA cannot recover from tim-
ing violations. Consider the scenario that the target clock
period is the one calculated by the proposed method. With
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Figure 11: Hold time violations at flip-flops and on
paths from [10]. The proposed method has no viola-
tion.

the target clock period given, the column vsp in Table 1 shows
the number of paths with setup violation in STA, and the col-
umn vsf shows the number of flip-flops with timing violation.
This comparison demonstrates that the proposed method has
a significant advantage in removing timing violations. Fur-
thermore, the numbers of paths and flip-flops with hold vio-
lation in STA are shown in the columns vhp and vhf , respec-
tively. This comparison confirms again the advantage of the
proposed method where there is no timing violation in all
these cases.

The runtime of the proposed method is shown in the last
column in Table 1. The largest runtime is 24 seconds for the
circuit mem ctrl with 2043 flip-flops. This runtime is larger
than that of a block-based STA algorithm. However, consid-
ering that the application scenario of the proposed method is
at late stages of design flow, this runtime is acceptable. In the
proposed method, the number of polygons in the clock-to-q
model affects the runtime of the ILP-based timing analysis.
Figure 8 shows the runtime trend of the proposed method
with respect to the number of polygons in the delay model.
In all these cases, there is no noticeable difference in the
calculated clock periods. Generally the runtime increases
proportionally to the number of polygons.

To compare the proposed method with previous methods,
we first calculate a minimum clock period using our method
and use it as the target clock period. Thereafter, we iden-
tify the timing violations in the results from the methods in
[9] and [10]. Figure 9 and Figure 10 show the comparisons
of setup violations of flip-flops and paths, respectively. In
[10], only the dependency between setup slack and clock-to-q
delay is considered, and it does not exploit the interdepen-
dency of clock-to-q delay, setup slack and hold slack together.
In the method [9], hold slack is fixed when maximizing the
shared setup slack. Consequently, these limitations lead to
many timing violations in their results. Besides setup vio-
lations, the number of hold violations from the method [10]
are shown in Figure 11. This comparison confirms again the
effectiveness of the proposed method.

5 Conclusion and future work
In this paper, we proposed a holistic method to evaluate the
timing performance of a circuit considering the interdepen-
dency of clock-to-q delay, setup slack and hold slack. Because
this interdependency allows timing compensation across flip-
flop stages, the clock period of a circuit can be reduced. This
is especially useful in late-stage designs where timing ECO is
expensive. The proposed method models the clock-to-q de-
lay surface using a piecewise model, reducing the modeling
details by extracting only the necessary delay information
useful to timing analysis. Thereafter, the minimum clock
period of the circuit is evaluated using an ILP-based formu-

lation, which for the first time provides a holistic solution
considering the interdependency to improve circuit perfor-
mance.

The proposed method uses a piecewise model for the clock-
to-q delay and an ILP formulation, so that it is challenging
to apply it for yield analysis directly. The future work is to
develop a statistical piecewise model for clock-to-q delay un-
der process variations as attempted in [14]. In addition, an
analytic statistical timing algorithm should also be consid-
ered.
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